Robust Identification of Large Genetic Networks
نویسندگان
چکیده
Temporal and spatial gene expression, together with the concentration of proteins and metabolites, is tightly controlled in the cell. This is possible thanks to complex regulatory networks between these different elements. The identification of these networks would be extremely valuable. We developed a novel algorithm to identify a large genetic network, as a set of linear differential equations, starting from measurements of gene expression at steady state following transcriptional perturbations. Experimentally, it is possible to overexpress each of the genes in the network using an episomal expression plasmid and measure the change in mRNA concentration of all the genes, following the perturbation. Computationally, we reduced the identification problem to a multiple linear regression, assuming that the network is sparse. We implemented a heuristic search method in order to apply the algorithm to large networks. The algorithm can correctly identify the network, even in the presence of large noise in the data, and can be used to predict the genes that directly mediate the action of a compound. Our novel approach is experimentally feasible and it is readily applicable to large genetic networks.
منابع مشابه
Robust Controller Design Based-on Aerodynamic Load Simulator Identification Driven by PMSM for Hardware-in-the-Loop Simulations
Aerodynamic load simulators generate the required time varying load to test the actuator’s performance in the laboratory. Electric Load Simulator (ELS) as one of variety of the dynamic load simulators should follows the rotation of the Under Test Actuator (UTA) and applies the desired torque to UTA’s rotor at the same time. In such a situation, a very large torque is imposed to the ELS from the...
متن کاملIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملFDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2004